Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.197
Filtrar
1.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38453466

RESUMO

Chronic pain and alcohol use disorder (AUD) are highly comorbid, and patients with chronic pain are more likely to meet the criteria for AUD. Evidence suggests that both conditions alter similar brain pathways, yet this relationship remains poorly understood. Prior work shows that the anterior insular cortex (AIC) is involved in both chronic pain and AUD. However, circuit-specific changes elicited by the combination of pain and alcohol use remain understudied. The goal of this work was to elucidate the converging effects of binge alcohol consumption and chronic pain on AIC neurons that send projections to the dorsolateral striatum (DLS). Here, we used the Drinking-in-the-Dark (DID) paradigm to model binge-like alcohol drinking in mice that underwent spared nerve injury (SNI), after which whole-cell patch-clamp electrophysiological recordings were performed in acute brain slices to measure intrinsic and synaptic properties of AIC→DLS neurons. In male, but not female, mice, we found that SNI mice with no prior alcohol exposure consumed less alcohol compared with sham mice. Electrophysiological analyses showed that AIC→DLS neurons from SNI-alcohol male mice displayed increased neuronal excitability and increased frequency of miniature excitatory postsynaptic currents. However, mice exposed to alcohol prior to SNI consumed similar amounts of alcohol compared with sham mice following SNI. Together, our data suggest that the interaction of chronic pain and alcohol drinking have a direct effect on both intrinsic excitability and synaptic transmission onto AIC→DLS neurons in mice, which may be critical in understanding how chronic pain alters motivated behaviors associated with alcohol.


Assuntos
Alcoolismo , Consumo Excessivo de Bebidas Alcoólicas , Dor Crônica , Doenças do Sistema Nervoso Periférico , Humanos , Camundongos , Animais , Masculino , Dor Crônica/metabolismo , Córtex Insular , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Etanol/farmacologia , Neurônios/metabolismo , Alcoolismo/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo
2.
ACS Chem Neurosci ; 15(6): 1157-1168, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38445956

RESUMO

Phytic acid (PA) has been reported to possess anti-inflammatory and antioxidant properties that are critical for neuroprotection in neuronal disorders. This raises the question of whether PA can effectively protect sensory neurons against chemotherapy-induced peripheral neuropathy (CIPN). Peripheral neuropathy is a dose-limiting side effect of chemotherapy treatment often characterized by severe and abnormal pain in hands and feet resulting from peripheral nerve degeneration. Currently, there are no effective treatments available that can prevent or cure peripheral neuropathies other than symptomatic management. Herein, we aim to demonstrate the neuroprotective effects of PA against the neurodegeneration induced by the chemotherapeutics cisplatin (CDDP) and oxaliplatin. Further aims of this study are to provide the proposed mechanism of PA-mediated neuroprotection. The neuronal protection and survivability against CDDP were characterized by axon length measurements and cell body counting of the dorsal root ganglia (DRG) neurons. A cellular phenotype study was conducted microscopically. Intracellular reactive oxygen species (ROS) was estimated by fluorogenic probe dichlorofluorescein. Likewise, mitochondrial membrane potential (MMP) was assessed by fluorescent MitoTracker Orange CMTMRos. Similarly, the mitochondria-localized superoxide anion radical in response to CDDP with and without PA was evaluated. The culture of primary DRG neurons with CDDP reduced axon length and overall neuronal survival. However, cotreatment with PA demonstrated that axons were completely protected and showed increased stability up to the 45-day test duration, which is comparable to samples treated with PA alone and control. Notably, PA treatment scavenged the mitochondria-specific superoxide radicals and overall intracellular ROS that were largely induced by CDDP and simultaneously restored MMP. These results are credited to the underlying neuroprotection of PA in a platinum-treated condition. The results also exhibited that PA had a synergistic anticancer effect with CDDP in ovarian cancer in vitro models. For the first time, PA's potency against CDDP-induced PN is demonstrated systematically. The overall findings of this study suggest the application of PA in CIPN prevention and therapeutic purposes.


Assuntos
Antineoplásicos , Doenças do Sistema Nervoso Periférico , Humanos , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Gânglios Espinais , Potencial da Membrana Mitocondrial , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Ácido Fítico/farmacologia , Ácido Fítico/metabolismo , Ácido Fítico/uso terapêutico , Platina/farmacologia , Platina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Receptoras Sensoriais/metabolismo
3.
Clin Exp Pharmacol Physiol ; 51(3): e13833, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38302079

RESUMO

Previous clinical reports have shown that capecitabine, an oral prodrug of 5-fluorouracil (5-Fu), can induce peripheral neuropathy, resulting in numbness, paresthesia and hypoesthesia. However, the mechanism through which capecitabine causes peripheral nerve injury remains unclear. Here, we demonstrate that systemic administration of capecitabine leads to myelin abnormalities in the peripheral nerves of mice, which are possibly attributed to the death of Schwann cells, the myelinating cells in the peripheral nervous system. Furthermore, our results show that 5-Fu induces significant oxidative stress in Schwann cells by inhibiting the expression of the anti-oxidative protein DJ-1, leading to a decrease in Schwann cell markers. We found that the anti-oxidant dihydromyricetin (DMY) reverses 5-Fu-induced Schwann cell death and oxidative stress and alleviates capecitabine-induced myelin abnormalities. Taken together, our data indicate that capecitabine induces peripheral myelin dysfunction by regulating DJ-1-mediated oxidative stress in Schwann cells and reveal DMY as a potential therapeutic strategy for capecitabine-induced peripheral neuropathy.


Assuntos
Flavonóis , Bainha de Mielina , Doenças do Sistema Nervoso Periférico , Camundongos , Animais , Bainha de Mielina/metabolismo , Capecitabina/metabolismo , Estresse Oxidativo , Doenças do Sistema Nervoso Periférico/metabolismo , Fluoruracila/toxicidade
4.
Signal Transduct Target Ther ; 9(1): 32, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351062

RESUMO

The appropriate and specific response of nerve cells to various external cues is essential for the establishment and maintenance of neural circuits, and this process requires the proper recruitment of adaptor molecules to selectively activate downstream pathways. Here, we identified that DOK6, a member of the Dok (downstream of tyrosine kinases) family, is required for the maintenance of peripheral axons, and that loss of Dok6 can cause typical peripheral neuropathy symptoms in mice, manifested as impaired sensory, abnormal posture, paw deformities, blocked nerve conduction, and dysmyelination. Furthermore, Dok6 is highly expressed in peripheral neurons but not in Schwann cells, and genetic deletion of Dok6 in peripheral neurons led to typical peripheral myelin outfolding, axon destruction, and hindered retrograde axonal transport. Specifically, DOK6 acts as an adaptor protein for selectivity-mediated neurotrophic signal transduction and retrograde transport for TrkC and Ret but not for TrkA and TrkB. DOK6 interacts with certain proteins in the trafficking machinery and controls their phosphorylation, including MAP1B, Tau and Dynein for axonal transport, and specifically activates the downstream ERK1/2 kinase pathway to maintain axonal survival and homeostasis. This finding provides new clues to potential insights into the pathogenesis and treatment of hereditary peripheral neuropathies and other degenerative diseases.


Assuntos
Doenças do Sistema Nervoso Periférico , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Axônios/metabolismo , Axônios/patologia , Neurônios/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Transdução de Sinais/genética
5.
Physiol Rep ; 12(1): e15908, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38176709

RESUMO

Iron accumulates in the neural tissue during peripheral nerve degeneration. Some studies have already been suggested that iron facilitates Wallerian degeneration (WD) events such as Schwann cell de-differentiation. On the other hand, intracellular iron levels remain elevated during nerve regeneration and gradually decrease. Iron enhances Schwann cell differentiation and axonal outgrowth. Therefore, there seems to be a paradox in the role of iron during nerve degeneration and regeneration. We explain this contradiction by suggesting that the increase in intracellular iron concentration during peripheral nerve degeneration is likely to prepare neural cells for the initiation of regeneration. Changes in iron levels are the result of changes in the expression of iron homeostasis proteins. In this review, we will first discuss the changes in the iron/iron homeostasis protein levels during peripheral nerve degeneration and regeneration and then explain how iron is related to nerve regeneration. This data may help better understand the mechanisms of peripheral nerve repair and find a solution to prevent or slow the progression of peripheral neuropathies.


Assuntos
Doenças do Sistema Nervoso Periférico , Humanos , Doenças do Sistema Nervoso Periférico/metabolismo , Degeneração Neural , Nervos Periféricos , Degeneração Walleriana/metabolismo , Neurônios/metabolismo
6.
Neuropharmacology ; 245: 109830, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160874

RESUMO

The ventrolateral orbital cortex (VLO) is identified as an integral component of the endogenous analgesic system comprising a spinal cord - thalamic nucleus submedius - VLO - periaqueductal gray (PAG) - spinal cord loop. The present study investigates the effects of 5-HT5A receptor activation in the VLO on allodynia induced by spared nerve injury and formalin-evoked flinching behavior and spinal c-Fos expression in male SD rats, and further examines whether GABAergic modulation is involved in the effects evoked by VLO 5-HT5A receptor activation. We found an upregulation of 5-HT5A receptor expression in the VLO during neuropathic and inflammatory pain states. Microinjection of the non-selective 5-HT5A receptor agonist 5-CT into the VLO dose dependently alleviated allodynia, and flinching behavior and spinal c-Fos expression, which were blocked by the selective 5-HT5A receptor antagonist SB-699551. Moreover, application of the GABAA receptor antagonist bicuculline in the VLO augmented the analgesic effects induced by 5-CT in neuropathic and inflammatory pain states, whereas the GABAA receptor agonist muscimol attenuated these analgesic effects. Additionally, the 5-HT5A receptors were found to be colocalized with GABAergic neurons in the VLO. These results provide new evidence for the involvement of central 5-HT5A receptors in the VLO in modulation of neuropathic and inflammatory pain and support the hypothesis that activation of 5-HT5A receptors may inhibit the inhibitory effect of GABAergic interneurons on output neurons projecting to the PAG (GABAergic disinhibitory mechanisms), consequently activating the brainstem descending inhibitory system that depresses nociceptive transmission at the spinal cord level.


Assuntos
Hiperalgesia , Doenças do Sistema Nervoso Periférico , Ratos , Masculino , Animais , Hiperalgesia/metabolismo , Serotonina/metabolismo , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Medição da Dor , Dor/tratamento farmacológico , Dor/metabolismo , Analgésicos/farmacologia , Doenças do Sistema Nervoso Periférico/metabolismo , Córtex Pré-Frontal
7.
J Nanobiotechnology ; 21(1): 447, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001489

RESUMO

BACKGROUND: Diabetic peripheral neuropathy (DPN) is one of the most common complications of diabetes and the main cause of non-traumatic amputation, with no ideal treatment. Multiple cell-derived exosomes have been reported to improve the progression of DPN. Blood therapy is thought to have a powerful repairing effect. However, whether it could also improve DPN remains unclear. RESULTS: In this study, we found that microRNA (miRNA) expression in plasma-derived exosomes of healthy rats (hplasma-exos) was significantly different from that of age-matched DPN rats. By injection of hplasma-exos into DPN rats, the mechanical sensitivity of DPN rats was decreased, the thermal sensitivity and motor ability were increased, and the nerve conduction speed was accelerated. Histological analysis showed myelin regeneration of the sciatic nerve, increased intraepidermal nerve fibers, distal local blood perfusion, and enhanced neuromuscular junction and muscle spindle innervation after hplasma-exos administration. Compared with plasma exosomes in DPN, miR-20b-3p was specifically enriched in exosomes of healthy plasma and was found to be re-upregulated in the sciatic nerve of DPN rats after hplasma-exos treatment. Moreover, miR-20b-3p agomir improved DPN symptoms to a level similar to hplasma-exos, both of which also alleviated autophagy impairment induced by high glucose in Schwann cells. Mechanistic studies found that miR-20b-3p targeted Stat3 and consequently reduced the amount of p-Stat3, which then negatively regulated autophagy processes and contributed to DPN improvement. CONCLUSIONS: This study demonstrated that miRNA of plasma exosomes was different between DPN and age-matched healthy rats. MiR-20b-3p was enriched in hplasma-exos, and both of them could alleviated DPN symptoms. MiR-20b-3p regulated autophagy of Schwann cells in pathological states by targeting Stat3 and thereby inhibited the progression of DPN.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Exossomos , MicroRNAs , Doenças do Sistema Nervoso Periférico , Animais , Ratos , Diabetes Mellitus Experimental/metabolismo , Exossomos/metabolismo , MicroRNAs/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo
8.
Cell Rep ; 42(11): 113282, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38007688

RESUMO

Schwann cells respond to acute axon damage by transiently transdifferentiating into specialized repair cells that restore sensorimotor function. However, the molecular systems controlling repair cell formation and function are not well defined, and consequently, it is unclear whether this form of cellular plasticity has a role in peripheral neuropathies. Here, we identify Mitf as a transcriptional sensor of axon damage under the control of Nrg-ErbB-PI3K-PI5K-mTorc2 signaling. Mitf regulates a core transcriptional program for generating functional repair Schwann cells following injury and during peripheral neuropathies caused by CMT4J and CMT4D. In the absence of Mitf, core genes for epithelial-to-mesenchymal transition, metabolism, and dedifferentiation are misexpressed, and nerve repair is disrupted. Our findings demonstrate that Schwann cells monitor axonal health using a phosphoinositide signaling system that controls Mitf nuclear localization, which is critical for activating cellular plasticity and counteracting neural disease.


Assuntos
Traumatismos dos Nervos Periféricos , Doenças do Sistema Nervoso Periférico , Humanos , Doenças do Sistema Nervoso Periférico/metabolismo , Células de Schwann/metabolismo , Axônios/metabolismo , Transdução de Sinais/fisiologia , Plasticidade Celular , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático/metabolismo
9.
Handb Exp Pharmacol ; 281: 191-205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37815594

RESUMO

Induced pluripotent stem cells (IPSCs), with their remarkable ability to differentiate into various cell types, including peripheral nervous system cells such as neurons and glial cells, offer an excellent platform for in vitro disease modeling. These iPSC-derived disease models have proven valuable in drug discovery, as they provide more precise simulations of a patient's disease state and allow for the assessment of potential therapeutic effectiveness and safety.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças do Sistema Nervoso Periférico , Humanos , Neurônios , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Descoberta de Drogas , Diferenciação Celular
10.
Biol Pharm Bull ; 46(8): 1049-1056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37532556

RESUMO

Bortezomib, an anticancer drug for multiple myeloma and mantle cell lymphoma, causes severe adverse events and leads to peripheral neuropathy. The associated neuropathy limits the use of bortezomib and could lead to discontinuation of the treatment; therefore, effective intervention is crucial. In the present study, we statistically searched for a drug that could alleviate bortezomib-induced peripheral neuropathy using adverse event self-reports. We observed that specific inhibitors of the mechanistic target of rapamycin (mTOR) lowered the incidence of bortezomib-induced peripheral neuropathy. These findings were experimentally validated in mice, which exhibited long-lasting mechanical hypersensitivity after repeated bortezomib treatment. This effect was inhibited for hours after a systemic injection with rapamycin or everolimus in a dose-dependent manner. Bortezomib-induced allodynia was accompanied by the activation of spinal astrocytes, and intrathecal injection of mTOR inhibitors or an inhibitor of ribosomal protein S6 kinase 1, a downstream target of mTOR, exhibited considerable analgesic effects in a dose-dependent manner. These results suggest that mTOR inhibitors, which are readily available to patients prescribed bortezomib, are one of the most effective therapeutics for bortezomib-induced peripheral neuropathy.


Assuntos
Antineoplásicos , Bortezomib , Doenças do Sistema Nervoso Periférico , Animais , Camundongos , Antineoplásicos/efeitos adversos , Bortezomib/efeitos adversos , Inibidores de MTOR , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
11.
Antioxid Redox Signal ; 39(16-18): 1167-1184, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37503611

RESUMO

Significance: The remarkable geometry of the axon exposes it to unique challenges for survival and maintenance. Axonal degeneration is a feature of peripheral neuropathies, glaucoma, and traumatic brain injury, and an early event in neurodegenerative diseases. Since the discovery of Wallerian degeneration (WD), a molecular program that hijacks nicotinamide adenine dinucleotide (NAD+) metabolism for axonal self-destruction, the complex roles of NAD+ in axonal viability and disease have become research priority. Recent Advances: The discoveries of the protective Wallerian degeneration slow (WldS) and of sterile alpha and TIR motif containing 1 (SARM1) activation as the main instructive signal for WD have shed new light on the regulatory role of NAD+ in axonal degeneration in a growing number of neurological diseases. SARM1 has been characterized as a NAD+ hydrolase and sensor of NAD+ metabolism. The discovery of regulators of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) proteostasis in axons, the allosteric regulation of SARM1 by NAD+ and NMN, and the existence of clinically relevant windows of action of these signals has opened new opportunities for therapeutic interventions, including SARM1 inhibitors and modulators of NAD+ metabolism. Critical Issues: Events upstream and downstream of SARM1 remain unclear. Furthermore, manipulating NAD+ metabolism, an overdetermined process crucial in cell survival, for preventing the degeneration of the injured axon may be difficult and potentially toxic. Future Directions: There is a need for clarification of the distinct roles of NAD+ metabolism in axonal maintenance as contrasted to WD. There is also a need to better understand the role of NAD+ metabolism in axonal endangerment in neuropathies, diseases of the white matter, and the early stages of neurodegenerative diseases of the central nervous system. Antioxid. Redox Signal. 39, 1167-1184.


Assuntos
Doenças Neurodegenerativas , Doenças do Sistema Nervoso Periférico , Humanos , Degeneração Walleriana/metabolismo , Degeneração Walleriana/patologia , NAD/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Axônios/metabolismo , Doenças Neurodegenerativas/metabolismo
12.
Cell Rep ; 42(7): 112802, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37453065

RESUMO

Schwann cells play critical roles in peripheral neuropathies; however, the regulatory mechanisms of their homeostasis remain largely unknown. Here, we show that nucleoporin Seh1, a component of nuclear pore complex, is important for Schwann cell homeostasis. Expression of Seh1 decreases as mice age. Loss of Seh1 leads to activated immune responses and cell necroptosis. Mice with depletion of Seh1 in Schwann cell lineage develop progressive reduction of Schwann cells in sciatic nerves, predominantly non-myelinating Schwann cells, followed by neural fiber degeneration and malfunction of the sensory and motor system. Mechanistically, Seh1 safeguards genome stability by mediating the interaction between SETDB1 and KAP1. The disrupted interaction after ablation of Seh1 derepresses endogenous retroviruses, which triggers ZBP1-dependent necroptosis in Schwann cells. Collectively, our results demonstrate that Seh1 is required for Schwann cell homeostasis by maintaining genome integrity and suggest that decrease of nucleoporins may participate in the pathogenesis of periphery neuropathies.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Doenças do Sistema Nervoso Periférico , Animais , Camundongos , Instabilidade Genômica , Bainha de Mielina/metabolismo , Necroptose , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo
13.
J Neurochem ; 166(2): 367-388, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37328915

RESUMO

Schwann cells (SCs) support peripheral nerves under homeostatic conditions, independent of myelination, and contribute to damage in prediabetic peripheral neuropathy (PN). Here, we used single-cell RNA sequencing to characterize the transcriptional profiles and intercellular communication of SCs in the nerve microenvironment using the high-fat diet-fed mouse, which mimics human prediabetes and neuropathy. We identified four major SC clusters, myelinating, nonmyelinating, immature, and repair in healthy and neuropathic nerves, in addition to a distinct cluster of nerve macrophages. Myelinating SCs acquired a unique transcriptional profile, beyond myelination, in response to metabolic stress. Mapping SC intercellular communication identified a shift in communication, centered on immune response and trophic support pathways, which primarily impacted nonmyelinating SCs. Validation analyses revealed that neuropathic SCs become pro-inflammatory and insulin resistant under prediabetic conditions. Overall, our study offers a unique resource for interrogating SC function, communication, and signaling in nerve pathophysiology to help inform SC-specific therapies.


Assuntos
Doenças do Sistema Nervoso Periférico , Estado Pré-Diabético , Camundongos , Humanos , Animais , Bainha de Mielina/metabolismo , Estado Pré-Diabético/genética , Estado Pré-Diabético/metabolismo , Análise da Expressão Gênica de Célula Única , Células de Schwann/metabolismo , Nervos Periféricos , Doenças do Sistema Nervoso Periférico/metabolismo
14.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982441

RESUMO

Adult human Schwann cells represent a relevant tool for studying peripheral neuropathies and developing regenerative therapies to treat nerve damage. Primary adult human Schwann cells are, however, difficult to obtain and challenging to propagate in culture. One potential solution is to generate Schwann cells from human induced pluripotent stem cells (hiPSCs). Previously published protocols, however, in our hands did not deliver sufficient viable cell numbers of hiPSC-derived Schwann cells (hiPSC-SCs). We present here, two modified protocols from two collaborating laboratories that overcome these challenges. With this, we also identified the relevant parameters to be specifically considered in any proposed differentiation protocol. Furthermore, we are, to our knowledge, the first to directly compare hiPSC-SCs to primary adult human Schwann cells using immunocytochemistry and RT-qPCR. We conclude the type of coating to be important during the differentiation process from Schwann cell precursor cells or immature Schwann cells to definitive Schwann cells, as well as the amounts of glucose in the specific differentiation medium to be crucial for increasing its efficiency and the final yield of viable hiPSC-SCs. Our hiPSC-SCs further displayed high similarity to primary adult human Schwann cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças do Sistema Nervoso Periférico , Adulto , Humanos , Doenças do Sistema Nervoso Periférico/metabolismo , Diferenciação Celular , Células de Schwann
16.
Nature ; 614(7946): 118-124, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697822

RESUMO

Diabetes represents a spectrum of disease in which metabolic dysfunction damages multiple organ systems including liver, kidneys and peripheral nerves1,2. Although the onset and progression of these co-morbidities are linked with insulin resistance, hyperglycaemia and dyslipidaemia3-7, aberrant non-essential amino acid (NEAA) metabolism also contributes to the pathogenesis of diabetes8-10. Serine and glycine are closely related NEAAs whose levels are consistently reduced in patients with metabolic syndrome10-14, but the mechanistic drivers and downstream consequences of this metabotype remain unclear. Low systemic serine and glycine are also emerging as a hallmark of macular and peripheral nerve disorders, correlating with impaired visual acuity and peripheral neuropathy15,16. Here we demonstrate that aberrant serine homeostasis drives serine and glycine deficiencies in diabetic mice, which can be diagnosed with a serine tolerance test that quantifies serine uptake and disposal. Mimicking these metabolic alterations in young mice by dietary serine or glycine restriction together with high fat intake markedly accelerates the onset of small fibre neuropathy while reducing adiposity. Normalization of serine by dietary supplementation and mitigation of dyslipidaemia with myriocin both alleviate neuropathy in diabetic mice, linking serine-associated peripheral neuropathy to sphingolipid metabolism. These findings identify systemic serine deficiency and dyslipidaemia as novel risk factors for peripheral neuropathy that may be exploited therapeutically.


Assuntos
Diabetes Mellitus Experimental , Insulina , Metabolismo dos Lipídeos , Doenças do Sistema Nervoso Periférico , Serina , Animais , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Glicina/metabolismo , Insulina/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Serina/metabolismo , Dieta Hiperlipídica , Adiposidade , Esfingolipídeos/metabolismo , Neuropatia de Pequenas Fibras , Dislipidemias
17.
Lasers Med Sci ; 38(1): 49, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36689023

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is one of the dose-dependent side effects of cisplatin. The loss of sensory neurons is observed in CIPN. There are many methods to minimalize CIPN symptoms such as pharmacological agents and photobiostimulation but the mechanisms of these methods are unclear. Our study is aimed at determining the effects of quercetin and low-level laser therapy (LLLT) in undifferentiated and nerve growth factor-differentiated PC12 cells in cisplatin-induced peripheral neuropathy. PC12 cells with cisplatin were co-treated with quercetin and LLLT (diode pumped all-solid-state laser, 670 nm, output 500 mW, and the laser beam surface area was 1.96 cm2). The effects of quercetin and LLLT on GAP-43 and Synapsin I expressions were analyzed by real-time PCR, cell viability was assessed by MTT assay, Annexin and dead assay measured the induction of apoptosis, the alterations in mitopotential were assessed by mitopotential assay, and lactate dehydrogenase activity in cells was analyzed. All experiment data were analyzed by the Tukey test and applied as a post hoc test, and statistical evaluation was made. Our results indicated that cisplatin increased apoptosis (24,210 ± 2189, 46,504 ± 8246) cells, mitochondrial dysfunction (44,312 ± 0.751, 68,788 ± 1271), and LDH activity (62,821 ± 8245, 87,838 ± 8116). Furthermore, it decreased cell viability (42,447 ± 1780, 36,140 ± 3682) and inhibited GAP-43 and Synapsin I genes in undifferentiated and differentiated PC12 cells. However, apoptosis, the alterations in mitopotential, and lactate dehydrogenase activity decreased by applications of quercetin and LLLT. It has been recommended that quercetin and low-level laser therapy roles on cisplatin-induced peripheral neuropathy should be investigated in vivo, and the relationship between quercetin and low-level laser therapy should be molecular.


Assuntos
Antineoplásicos , Terapia com Luz de Baixa Intensidade , Doenças do Sistema Nervoso Periférico , Ratos , Animais , Cisplatino/efeitos adversos , Quercetina/efeitos adversos , Terapia com Luz de Baixa Intensidade/métodos , Proteína GAP-43 , Sinapsinas , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Lactato Desidrogenases , Antineoplásicos/farmacologia
18.
Pain ; 164(6): 1264-1279, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524581

RESUMO

ABSTRACT: Neuronal N-type (Ca V 2.2) voltage-gated calcium channels are essential for neurotransmission from primary afferent terminals in the dorsal horn. In this study, we have used a knockin mouse containing Ca V 2.2 with an inserted extracellular hemagglutinin tag (Ca V 2.2_HA), to visualise the pattern of expression of endogenous Ca V 2.2 in dorsal root ganglion (DRG) neurons and their primary afferents in the dorsal horn. We examined the effect of partial sciatic nerve ligation (PSNL) and found an increase in Ca V 2.2_HA only in large and medium dorsal root ganglion neurons and also in deep dorsal horn synaptic terminals. Furthermore, there is a parallel increase in coexpression with GFRα1, present in a population of low threshold mechanoreceptors, both in large DRG neurons and in their terminals. The increased expression of Ca V 2.2_HA in these DRG neurons and their terminals is dependent on the presence of the auxiliary subunit α 2 δ-1, which is required for channel trafficking to the cell surface and to synaptic terminals, and it likely contributes to enhanced synaptic transmission at these synapses following PSNL. By contrast, the increase in GFRα1 is not altered in α 2 δ-1-knockout mice. We also found that following PSNL, there is patchy loss of glomerular synapses immunoreactive for Ca V 2.2_HA and CGRP or IB4, restricted to the superficial layers of the dorsal horn. This reduction is not dependent on α 2 δ-1 and likely reflects partial deafferentation of C-nociceptor presynaptic terminals. Therefore, in this pain model, we can distinguish 2 different events affecting specific DRG terminals, with opposite consequences for Ca V 2.2_HA expression and function in the dorsal horn.


Assuntos
Gânglios Espinais , Mecanorreceptores , Doenças do Sistema Nervoso Periférico , Animais , Camundongos , Ratos , Gânglios Espinais/metabolismo , Nociceptores/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Ratos Sprague-Dawley
19.
Neuropathol Appl Neurobiol ; 49(1): e12853, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36180966

RESUMO

AIMS: Target skeletal muscle fibres - defined by different concentric areas in oxidative enzyme staining - can occur in patients with neurogenic muscular atrophy. Here, we used our established hypothesis-free proteomic approach with the aim of deciphering the protein composition of targets. We also searched for potential novel interactions between target proteins. METHODS: Targets and control areas were laser microdissected from skeletal muscle sections of 20 patients with neurogenic muscular atrophy. Samples were analysed by a highly sensitive mass spectrometry approach, enabling relative protein quantification. The results were validated by immunofluorescence studies. Protein interactions were investigated by yeast two-hybrid assays, coimmunoprecipitation experiments and bimolecular fluorescence complementation. RESULTS: More than 1000 proteins were identified. Among these, 55 proteins were significantly over-represented and 40 proteins were significantly under-represented in targets compared to intraindividual control samples. The majority of over-represented proteins were associated with the myofibrillar Z-disc and actin dynamics, followed by myosin and myosin-associated proteins, proteins involved in protein biosynthesis and chaperones. Under-represented proteins were mainly mitochondrial proteins. Functional studies revealed that the LIM domain of the over-represented protein LIMCH1 interacts with isoform A of Xin actin-binding repeat-containing protein 1 (XinA). CONCLUSIONS: In particular, proteins involved in myofibrillogenesis are over-represented in target structures, which indicate an ongoing process of sarcomere assembly and/or remodelling within this specific area of the muscle fibres. We speculate that target structures are the result of reinnervation processes in which filamin C-associated myofibrillogenesis is tightly regulated by the BAG3-associated protein quality system.


Assuntos
Doenças do Sistema Nervoso Periférico , Humanos , Doenças do Sistema Nervoso Periférico/metabolismo , Actinas/análise , Actinas/metabolismo , Proteômica , Proteínas Musculares/metabolismo , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/análise , Proteínas Reguladoras de Apoptose/metabolismo
20.
J Mol Neurosci ; 72(12): 2507-2516, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36534294

RESUMO

Diabetic peripheral neuropathy (DPN) is a highly prevalent diabetic complication characterized at the molecular level by mitochondrial dysfunction and deleterious oxidative damage. No effective treatments for DPN are currently available. The present study was developed to examine the impact of exosomes derived from bone marrow mesenchymal stromal cells (BMSCs) overexpressing sirtuin 1 (SIRT1) on DPN through antioxidant activity and the preservation of mitochondrial homeostasis. A DPN model was established using 20-week-old diabetic model mice (db/db). Exosomes were prepared from control BMSCs (exo-control) and BMSCs that had been transduced with a SIRT1 lentivirus (exo-SIRT1). Sensory and motor nerve conduction velocity values were measured to assess neurological function, and mechanical and thermal sensitivity were analyzed in these animals. Exo-SIRT1 preparations exhibited a high loading capacity and readily accumulated within peripheral nerves following intravenous administration, whereupon they were able to promote improved neurological recovery relative to exo-control treatment. DPN mice exhibited significantly improved nerve conduction velocity following exo-SIRT1 treatment. Relative to exo-control-treated mice, those that underwent exo-SIRT1 treatment exhibited significantly elevated TOMM20 and Nrf2/HO-1 expression, reduced MDA levels, increased GSH and SOD activity, and increased MMP. Together, these results revealed that both exo-control and exo-SIRT1 administration was sufficient to reduce the morphological and behavioral changes observed in DPN model mice, with exo-SIRT1 treatment exhibiting superior therapeutic efficacy. These data thus provide a foundation for future efforts to explore other combinations of gene therapy and exosome treatment in an effort to alleviate DPN.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Doenças do Sistema Nervoso Periférico , Animais , Camundongos , Medula Óssea/metabolismo , Exossomos/metabolismo , Exossomos/transplante , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...